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Abstract— Binarized Neural Network (BNN), which is a

variant of Convolutional Neural Network (CNN) with binary

weights and binary outputs on a neuron, has emerged as a

promising approach to deploy artificial intelligence on resource-

restricted devices in recent years. Due to the binarized weights,

there are no longer required multipliers for computation, and

there exist relatively high similarities among filters as well. In

this work, we propose a partial-filter sharing approach and in-

tegrate it with the state-of-the-art to reduce the hardware cost

and the synthesis time onto Field Programmable Gate Arrays

(FPGAs). As compared to the state-of-the-art, the LUT reduc-

tion ratio by our approach is 47.71% on average without any

accuracy loss, and 62.5% synthesis time in the Tiny ImageNet

layers can be also saved on average.

I. Introduction

In recent years, Convolutional Neural Networks (CNNs) have
achieved a huge success in artificial intelligence. It conquered plenty
of problems that were hard to deal with using computers in the
early days. Currently, deploying AI on edge devices such as smart-
phones, wearable devices, and IOT devices has become a trend to
meet people’s daily need. However, a great computational chal-
lenge still remains for achieving this goal. CNNs usually contain
vast numbers of floating-point parameters and require enormous
numbers of floating-point operations in both training and inference
phases. This scenario makes CNNs difficult to be implemented on
edge devices. As a result, minimizing the computational complexity
of neural network inference on edge devices has become crucial.

To respond to this challenge, one attempt is to reduce the bit-
width of parameters for CNN training and inference [5][6][12][15].
Among these works, a promising approach is to use binarized neural
networks (BNNs)[2] proposed a method that confines the weights
to be either +1 or -1 such that the multiply-accumulate operations
in CNNs can be replaced with addition and subtraction operations.
Then in [3][10], XNOR-Net was proposed with a restriction that
both inputs and weights of the convolutional layers and fully con-
nected layers, except the first layer, are binarized. Hence, it can
further simplify the additions and subtractions to logical operations
and be capable of exhibiting an efficient hardware realization.

Researchers have proposed many ideas to improve the inference
performance by removing redundancies in BNNs. [13] demonstrated
that batch normalization, activation, and max-pooling functions can
be substituted with threshold functions and boolean OR operations.
[4] decomposed 3-D filters into 2-D filters and exploited the repeated
filters, inverse filters, and similar filters to share results in convolu-
tional layers of BNNs. [8] observed that the process of calculating
the outputs of related filters has a specific inclusion similarity rela-
tionship. With the relationship, the original XNOR-Popcount op-
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erations in BNNs can be further reduced to Threshold-Comparable-
Popcount (TCP) operations. Different from [4], [14] proposed a flex-
ible result sharing approach and reused the computed result among
partial 1-D filters instead of 2-D filters.

According to the observation that enormous redundant opera-
tions still remain after these optimizations, this work proposes a
partial-filter sharing approach with a covering technique to reduce
the number of operations in the inference model of BNNs and saves
the resource usage on edge devices.

To demonstrate the effectiveness of the proposed approach on
edge devices, we synthesized the inference models with the proposed
approach on a field programmable gate array (FPGA) platform,
Xilinx ZCU104. Experiments on Tiny ImageNet [9] BNN models
show that the LUT reduction rate by our approach is 47.03% on
average compared to the previous works [8]. Furthermore, 62.5%
time for synthesis in the Tiny ImageNet layers can also be saved on
average.

II. Preliminaries

A BNN is a variant of CNN, which maintains the similar structure
of CNN but its weights and activations are either -1 or 1. With
the effort of [3][10][13], only three types of operations remain in
BNNs. The Type-I is an XNOR-Popcount operation, which can be
expressed as:

y =

n∑
i=1

(wi ⊙ xi), (1)

where XNOR operation is denoted by ⊙, and xi, wi are the inputs
and weights, respectively.

The Type-II is an OR operation, which substitutes the original
max-pooling operation in the pooling layer. The Type-II operation
can be expressed as:

y = OR(x0, ..., xi, ..., xn), (2)

where xi is the value to be processed by the max-pooling operation.

The Type-III is a threshold operation, which is transformed from
the batch normalization and activation function. The Type-III op-
eration can be expressed as:

y =

{
1 ; if x ≥ T

0 ; otherwise
(3)

where T is the threshold value.

Since the same position of different filters corresponds to the
same input, repeated operations in both convolutional layers and
fully connected layers may occur. The authors in [4] proposed an
approach to find the repeated filters for sharing the convolutional
results, thereby reducing the number of operations in BNNs. As the
number of unique 3-D filters grows exponentially with the increase
of number of bits in a 3-D filter, the authors proposed to decom-
pose all the 3-D filters into 2-D filters for having a smaller number of
unique 2-D filters. To further reduce this number, they considered
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Fig. 1. An example of filter inclusion similar phenomenon.

the inverse filter as a filter repetition as well. As a result, the pos-
sibility that the result of a 2-D filter performing XNOR-Popcount
operations can be shared to others is greatly increased.

[14] inherited the ideas of repeated filters and inverse filters, and
flattened 3-D filters into 1-D filters. Then the 1-D filters are divided
into multiple segments with a length of l bits. For example, when
we have 64 64 × 3 × 3 3-D filters, these filters will be flattened as
64 576-bit 1-D filters. When the length l of a segment is set to
4, each 1-D filter will be decomposed into 144 segments and the
number of unique segments is only 24 = 16. Since the same index of
segment corresponds to the same input, the result of one segment
performing XNOR-Popcount operation can be shared to the same
index segment in different filters when the weights of these segments
are all the same. It is more possible to share the results when a 1-
D filter is decomposed into multiple segments since the number of
unique segments are much fewer than the number of unique 2-D
filters.

When dividing a 1-D filter into multiple segments, the results of
all the segments after performing XNOR-Popcount operations have
to be accumulated to obtain the output of a complete operation.
Since the accumulations of these results also require computation,
the authors of [14] extended the idea of result sharing to the partial-
result accumulation. They set the quantity of filters sharing the ac-
cumulation results to two for pursuing more partial-result sharings.

The authors in [8] aimed to simplify the XNOR-Popcount oper-
ation even further. They observed that when there is only one bit
with different values between two filters, only one convolutional re-
sult of these two filters corresponding to the same input is different
and the others are the same. The mathematical relationship be-
tween their corresponding convolutional outputs can be expressed
as:

y(n) = y(n− 1) + (inputn × 2)− 1

= y(n− 1) + inn − 1
(4)

where n = 1 ∼ filter size (H)1, n is the number of bits with value
of 1 in the filter, inputn is the input bit of the sliding window
corresponding to the only different weight between filters, inn is
two times of inputn, and y(n) and y(n − 1) are the results of the
input of the sliding window convolving with the filters that have n

and (n− 1) bits of 1, respectively. Note that y(0) = H −
H∑
i=1

inputi

due to XNOR-Popcount operation.
For example in Fig. 1, the input of the sliding window is [1,

0, 1, 0, 0, 1, 1, 1, 1] 2, the filter Wh is [1, 1, 0, 0, 1, 1, 1, 1, 0],
and the filter Wp is [1, 1, 1, 0, 1, 1, 1, 1, 0]. By performing the
XNOR-Popcount operation for the input and filter Wh, the result
in the output y(6) for this operation is five. Since the only difference
between the filters Wh and Wp is at the 3rd bit, the result in the

1The filter size H is the decimal number of an m × m filter. For example,
the filter size H of a 3 × 3 filter is 9.

2The order is from the left to the right, from the top to the bottom.

output y(7) can be obtained by using y(6) and the 3rd bit in the
sliding window of the input feature map according to EQ(4). Thus,
y(7) = y(6) + (1× 2)− 1 = 6, which is the same as performing the
XNOR-Popcount operation for the input in the sliding window and
the filter Wp.

Given a filter having zero bit of 1 and another filter having one
bit of 1, the mathematical relationship between their outputs can be
expressed as: y(1) = y(0)+ in1−1. Similarly, y(2) = y(1)+ in2−1.
As replacing y(1) with y(0)+in1−1, y(2) = y(0)+in1−1+in2−1 =
y(0) + in2 + in1 − 2. Hence, EQ(4) can be generalized as EQ(5)
without involving any XNOR-Popcount operation:

y(n) = y(0) +

n∑
i=1

ini − n

= (H −
H∑
i=1

inputi) +

n∑
i=1

ini − n

(5)

Since n is the number of bits with value of 1 in the filter, it can be
computed beforehand and merged into the corresponding threshold
value without influencing the final results. As a result, we rewrite
the new threshold value tnew as:

tnew = to + n (6)

where to is the original threshold value, and EQ(5) will become
EQ(7) accordingly.

y(n) = y(0) +
n∑

i=1

ini (7)

III. Proposed Approach

We exploit the repeated partial-result to minimize operation
counts in BNNs. Also, the original XNOR-Popcount operation in
BNNs can be simplified as the accumulation of the inputs corre-
sponding to the weight with value of 1. Thus, we can formulate the
problem of finding the partial-filter repetition as a covering prob-
lem. First, all the 3-D filters are flattened in the row-major order
as 1-D filters. Then, all the 1-D filters with l bits are arranged in
the filter table as shown in Fig. 2. A rectangle covering algorithm
is then used to find the common partial-filters iteratively such that
more 1s are covered by rectangles.

A. Rectangle Covering

A rectangle is defined as a set of rows and columns such that
all the elements are 1. Each rectangle has a gain representing the
number of addition operations that can be saved in the implemen-
tation. For example in the table of Fig. 2, there are four filters
with length of 10 bits. The row set {1, 2, 3} and the column set
{2, 3, 4, 10} form a rectangle meaning that Filters 1, 2, 3 share the
partial-result of (in2 + in3 + in4 + in10). Thus, the number of
addition operations saved by this rectangle, i.e, gains, is 2× 3 = 6.
The gain of a selected rectangle ri is expressed as:

gain(ri) = (F − 1)× (C − 1) (8)

Fig. 2. An example of a filter table.
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Fig. 3. (a) Filter table with 8 filters and 10 weights. (b) The filter similarity table. (c) The weight similarity table.

Fig. 4. (a) The updated filter table after the first iteration in Fig. 3. (b) The updated filter similarity table after the first iteration. (c) The updated weight
similarity table after the first iteration.

where F is the number of filters and C is the number of weights
in this rectangle. Our covering problem is to find a set of dis-
joint rectangles R, R = {r1, ..., ri, ..., rn}, such that the total gain =
n∑

i=1

gain(ri) is maximized.

B. Find the Best Rectangle

We first build a filter similarity table for selecting the best row
of the filter table. The number of weights with value of 1 in the
same column of the filter table between Filters i, j is recorded in the
position of row i, column j of the filter similarity table. For example,
there are 8 filters with 10 weights in Fig. 3(a). The weights of the
1st, 4th and 8th column in Filters 1 and 4 are both 1. Hence, 3 is
recorded in the position of row 1 and column 4 of the filter similarity
table as shown in Fig. 3(b), indicating that three weights of 1 are
in common between Filters 1 and 4.

Since the maximum value 5 in the filter similarity table is at the
row of F 1, the row of F 1 is selected as the best row. We find
the best rectangle from the best row as follows. The best row in
this example represents Filter 1. We add another filter to form a
rectangle with a larger gain. Hence, the criterion for selecting the
added filter in each step is based on the maximum value in the best
row of the filter similarity table. The process of finding the best
rectangle will be terminated until the value in the best row of the
filter similarity table is less than 2. The rectangle with the best gain
is recorded in this procedure.

According to the filter similarity table in Fig. 3(b), the order of
the added filter is the 8th row, the 5th row, the 4th row, the 3rd

row, and then the 6th row of Fig. 3(a). Thus, we first add Filter
8 into the initial best rectangle. The best rectangle is then updated
to the row set = {1, 8} and the column set = {1, 3, 4, 5, 8}, and the
gain(rbest) = (2 − 1) × (5 − 1) = 4. In the next step, Filter 5 is
added to the rectangle. The gain of the best rectangle is updated
as gain(rbest) = (3 − 1) × (4 − 1) = 6, which corresponds to the
row set = {1, 5, 8} and the column set = {3, 4, 5, 8}. Then in the
succeeding steps, the new rectangles created by adding other filters
cannot have a better gain than the best rectangle. Thus, the best

Fig. 5. The results of the second and third iterations after applying our
approach in Fig. 3.

rectangle in the first iteration is the row set = {1, 5, 8} and the
column set = {3, 4, 5, 8} as shown in Fig. 4(a). We can also build
a weight similarity table as shown in Fig. 3(c) for selecting the
best column of the filter table. The number of filters having the
same weights with value of 1 between columns i and j of the filter
table is recorded in the position of row i, column j of the weight
similarity table. In Fig. 3(a), the weights of the 1st and 2nd column
in Filters 4 and 6 are both 1. Hence, 2 is recorded in the position
of row 1 and column 2 of the weight similarity table as shown in
Fig. 3(c), indicating that there are two filters in common between
the 1st and 2nd weights. The remaining steps of finding the best
rectangle from the best column follow the same procedure of finding
the best rectangle from the best row, except expanding the rectangle
by adding one column each time.

After identifying these two best rectangles starting from the best
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row and the best column, we choose the better one as the best rect-
angle in this iteration. We then update the filter table as follows.
First, those 1s in the filter table corresponding to the best rectangle
are changed to 0. Next, the data in the filter similarity table will
be updated as well. For example, in the first iteration of finding
the best rectangle in Fig. 3(a), we select Filters 1, 5, and 8, and
Weights 3, 4, 5, and 8 as the best rectangle. Thus, those 1s in the
filter table are changed to 0. Then, in the filter similarity table,
those updated values are underlined in red in Fig. 4(b) about F 1,
F 5 and F 8. Similarly, the data in the weight similarity table cor-
responding to the column set of the best rectangle is updated as Fig.
4(c). The above process of finding the best rectangle will be iterated
until gain(rbest) < 2. The results of finding the best rectangle in the
second and third iterations are shown in Figs. 5(a) and 5(b). In
the second iteration, we select Filters 2, 4, and 7, and Weights 2,
4, and 9 as the best rectangle, whose gain is 4. Then in the third
iteration, we select Filters 3 and 6, and Weights 1, 3, 7, and 10 as
the best rectangle, whose gain is 3. Finally, since the gain of the
best rectangle in the fourth iteration is smaller than 2, the whole
process of finding the best rectangle is terminated.

IV. Experimental Results

To demonstrate that the proposed approach can be realized in
BNNs, one BNN model trained by ourselves in the experiments.
We use python 3.8 as our programming language to train BNNs and
run our approach to generate designs in Verilog files for the BNNs
realization. The experimental environment is Linux Ubuntu 18.04,
with Intel i7-8700 CPU, Nvidia 1080Ti GPU, and 32GB RAM. We
use Xilinx Vivado 2019.1 for synthesis and deploy the BNNs on
ZCU104 Development Board with Xilinx XCZU7EV-2FFVC1156
MPSoC.

Since the functionality of our implementation is exactly the same
as the one obtained from the FINN compiler, there is no further
accuracy loss with our approach. The synthesized results are shown
in TABLE I. Column 1 “LAYER i (SIZE)” in the table indicates the
ith layer of the network, and the size of the layer, which is the width
of the input × the number of the filters to be processed. Note that
the synthesized results only include the convolutional layers and
fully connected layers. We reimplemented the approach of [8] for
each layer on ZCU104 Development Board for comparison. Columns
3, 4, and 5 in the tables show the number of required LUTs, the LUT
reduction ratio, and the synthesis time, respectively. We compare
the results of required LUTs in our approach with the approach [8]
to get the LUT reduction ratio. The last column of the table shows
the CPU time when performing the proposed approach.

We trained the network for Tiny ImageNet dataset [9] based on
the architecture of VGG-13[11]. The network topology on Tiny
ImageNet datasets has six and ten convolutional layers. It has three
fully connected layers and two max-pooling layers right after two
convolutional layers, LAYERs 1 and 4. Our approach is not applied
to the first convolutional layer, LAYER 0, and LAYERs 2 and 5
since the inputs of LAYER 0 are not binarized, and LAYERs 2 and
5 are max-pooling layers. TABLE I shows the synthesis results.

When considering all the layers, our approach on Tiny ImageNet
achieves 47.71% reduction of the number of the required LUTs on
average as compared to [8]. Furthermore, most layers in TABLE
I have a significant reduction of the synthesis time. Take all the
layers of the two models into consideration, the synthesis time is
reduced by 62.5% on average in our approach as compared to [8]. It
takes 331.48 seconds on average for running the program, which
is relatively inexpensive compared to the synthesis time. Thus,
the proposed approach simultaneously reduces the requirement of
hardware resources and synthesis time when deploying BNNs on the
FPGA platforms.

TABLE I
Synthesis results of BNN layers on Tiny ImageNet dataset.

V. Conclusion
In this paper, we propose a partial-filter sharing approach and

integrate it with the state-of-the-art for minimizing computation
in BNNs. The proposed approach exploits the filter repetitions of
partial-filters to share their partial-results. Experimental results
show that the proposed approach significantly reduces the number
of required LUTs and the synthesis time on FPGA platforms for
BNN realization.
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